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C. Numerical Example

A nonlinear capacitance of the Schottky barrier is taken with

the
Q=y2eqN,(V, - V) (23)

numerical example: Q = 2.06 X10721/0.5~V biased at V= —10
V at 10 GHz.

IV. CONCLUSION

A definition of the nonlinedr reflection coefficient based on the
application of the describing function to the power waves has
been proposed in this short paper.

Care must be taken to determine in a tircuit configuration
which is the input waveform: sinusoidal input current, sinusoidal
input voltage, or sinusoidal incident wave. As shown in the
example, discrepancies might arise between different cases. As we
have investigated by computer simulation for nonlinear elements
with odd symmetry about the operating point, these discrepancies
are small, while for nonlinear elements without symmetry (tunnel
diode in the example) they are quite important. This concludes
that while working on a network analyzer one might interchange
nonlinear resistance and nonlinear reflection coefficient concepts
in the first case, while in the latter case nonlinear reflection
coefficient on a b-a linearization basis should be used, provided
“b” harmonics are loaded by the characteristic impedance.
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Application of Boundary-Element Method to
Electromagnetic Field Problems
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Abstract —This paper proposes an application of the boundary-element
method to two-dimensional electromagnetic field problems. By this method,
calculations can be performed using far féewer nodes than by the finite-ele-
ment method, and unbounded field problems are easily treated without
special additional consideration. In addition, the results obtained have fairly
good accuracy. In this paper, analyzing procedures of electromagnetic field
problems by the boundary-element method, under special conditions, are
proposed and several examples aie investigated.
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Fig. 1. Two-dimensional region R.

I. INTRODUCTION

At present, the finite-element method is widely used in many
fields. The main reason may be that, by the finite-elemént method,
it is easy to handle inhomogeneities and complicated structures.
However, it requires a large computer memory and long comput-
ing time to solve the final matrix equation. In addition, un-
bounded field problems need some additional techniques [1], {2].

Récently, the boundary-element method has been proposed,
which is interpreted as a combination technique of the conven-
tional boundary-iritegral equation method and a discretization
technique, such as the finite-element method, and which has
merits of both the above methods, i.e., the required size of the
computer memory being small and the obtained results having
fairly good accuracy [3], [4]. Namely, the boundary-element
method is a boundary method and, therefore, if the region to be
analyzed is homogeneous, then it requires nodes, necessary for
calculation, on its boundary only. So the problem can be tréated
with one less dimension. Moreover, it can handle unbounded
field problems easily, so that it is suitable for the electromagnetic
field analysis which often includes unbounded regions [5], [6].

In this paper, a formulation of two-dimensional electromag-
netic field problems by the boundary-element méthod and its
application to several interesting cases, such as the problem of
clectromagnetic waveguide discontinuities, multi-media problems,
and electromagnetic wave scattering problems [6]. In addition,
several examples are analyzed and the results obtained with the
boundary-element method aré compared with rigorous ones, and
solutions of the other numerical methods. The ptopriety of our
analyzing procedure of the boundary-element method is verified.

II. GENERAL FORMULATION

A two-dimensional region R enclosed by a boundary B, as
illustrated in Fig. 1, is considered. In the region R, Helmholtz’s
equation

(V24 k>)u=0 1)
holds, where u is the potential used for analysis, we write its

outward normal derivative as ¢, and k denotes the wavenumber
in free space. The boundaty condition on B is

u=1u 2)
or

a=7 3)
where “~” means a known value. Here; Green’s function

w= = G H (kr) @)

is introduced, where H{® is the Hankel function of the second
kind and order zero. By the method of weighted residuals [3], [4]
or Green’s formula, the following equation is obtained:

u,+_/;guq*dc='/;3qu*dc. (5)
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Fig. 2. Integration on each element.

In (5), the suffix “i” means an arbitrary point in the region R
and ¢* is the outward normal derivative of u*

JH(Z)(k )3(kr)

=£kHPKkﬂcm40jn) (6)

In (6), H{ is the Hankel function of the second kind and order
one. For the case where the point i is placed on the boundary B,
the singular point of Green’s function appears and special consid-
eration is necessary. Now, we adopt the integration path going
round the node i/ as shown in Fig, 2. Then (5) is rewritten as
follows:

u,+ lim [ ug*dc+ lim/ uq* dec
ce—>0’B' e—>0’p”

= lim u*dc+ lim uw*de. (7

s—)O'/B’q E—)O'I;B”q ( )
Here, we estimate the integration over the boundary B” as
follows:

lim uq*dc— hm] us kaz)(ke)dc
€0 0vYp”
= lim uikHlm(ke)eﬂ
e— 0 4
—Jlren ke _ZL>
_4"93‘35[‘{ 2 ( 7 ke
; :
—-—ﬁu, (8)
im [ qu*dec= lim q{—%Héz)(ke)} de
e—>0/p” e->0/p”
. J 2
= lim | ¢ — {1—-}—(1nke+y~ln2)}60
€= 0 m
=0
y=0.5772--- (Euler’s number). )

From (5), (8), and (9), we derive the next equation as follows:

cu, +£}qu*dc=_£3qu*dc,

8 .
¢=1-7- )[3—6113}) [ (10)

In (10), f denotes the Cauchy’s principal value of integration.
Next, the boundary B is approximated by the connection of line
elements, on each of which « and ¢ are assumed to vary linearly.
Then, (10) is discretized as follows:

cut Tl (i) = Elaml{q) . @

IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 32, NO. 4, APRIL 1984

In (11), n is the number of elements and u;, u,, ¢,, and ¢, are the
potentials and the potential derivatives on the two nodes of the
eth element and hy, h,, g;, and g, are contributions of the eth
element to integration. When the point i does not belong to the
eth element, they are calculated with Gaussian integration as

= e oy sosctrim ae- 1.

o)=L o ae

where £ is a normalized coordinate defined on the eth element, l,
is the length of the element, and ¢; and ¢, are the 1nterpolat1on
functlons given as follows:

$2}=%(1¢5). (14)

When the point i belongs to the eth element, calculations of g;,
82, hy, and &, involve the limitation of € — 0. In this case, the
vector r is at right angles to the outward normal vector n (see
Fig. 2), so that cos(r; n) becomes equal to zero and

hy=h,=0. (15)

The remainders are g, and g,. Here, we consider the case where
the point i coincides with the first node of the eth element

3 Lo s){ ]H<’>(kr)} dg

(13)

1
= hm

ﬁ%f{whw@wm%wg
2 e e ) )
=1T16£€T§){[/315 H<2>< klf‘g)r—zszéz)(%klfg) dg}.

(16)

In the second term of (16), the Hankel function is expanded to
infinite series and is integrated by term

Lol o 1 I ERRS
1=/l [le (kl)+j= { (2kle)+y 1 (kl) 1

L2 (DK zslﬂ)}}
1 1

s=1 (s)22 (25 +1)
1
h5—1+§+§+"‘+;. (17)

2/ K,
{ ’—j;(ln7+}’—’h§*—

From (16) and (17). we obtain the next result for g2

gz=“:11‘l(e[k1 HP (KL, ) Jz(kll )] (18)

If the point 1 is the second node of the eth element, then g, is
estimated with (18) and g, with (17). The infinite series in (17) is
approximated by the first few terms, since the length of the eth
element /, is chosen as /, <A /10, ie., ‘kl, <2m/10, so that the
series rapldly converges, where As the wavelength in free space.

In the above calculations, the esnmatlon of ¢, is important for
the Dirichlet boundary condition giving the nonzero potential.
Because ¢, is the coefficient of u,, any value of ¢, is permitted for
the boundary condition giving the zero potential; but for the case
of the nonzero potential, ¢, must be calculated precisely [7].
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Fig. 3.

In the matrix notation, (11) is rewritten as follows:
=Ggq. (19)

On each node, the potential u or its outward normal derivative ¢
must be glven as the boundary condition. Then, all the remaining
u’s and ¢’s can be calculated from (19). The matrices produced
by the boundary-element formulation are much smaller in size
than the finite-element method.

III. THE CASE OF WAVEGUIDES WITH DISCONTINUITIES

For a typical example, a parallel-plane waveguide with discon-
tinuities is considered, and the mode having the z-component of
the electric field, which is chosen as the analyzed potential u, is
assumed. In this case, a closed region R, as shown in Fig. 3, is
chosen as the analyzed model, which is enclosed by the boundary
of the waveguide wall B, and pseudo-boundanes at the power
supply side and the opposite load side, which we call the input-side
boundary B, and the output-side boundary B,, respectively.

From (19), the following equation is obtained for the region
R .

we

. . ul \ ql
[H,H(,Hw]{"a}=[G,G,,Gw]{qg}, inR,. (20)
u, q.

In (20), suffixes i, o, and w show the quantities corresponding to
the boundaries B,, B,, and B,, respectively. On the waveguide
wall, the electric-field component parallel to it vanishes, so that
the following boundary condition is taken:

u,=0, onB,.

(21)
But on the remaining boundaries B, and B,, any specified value
of u or g cannot be given. If they are given, the phase ré¢lation
between the field components on the input- and the output-side
boundaries are also given, and, therefore, the problem has already
been solved. This is a contradiction. ’

Now, we adopt the following procedure. First, we place the two
pseudo-boundaries B, and B, at the position where it is consid-
ered that the reflecting electromagnetic wave, generated at thie
discontinuites, attenuates and almost vanishes. The TE,,-mode
field distribution is assumed on them. Then, on only B,, the
boundary condition, in complex form, is placed

u =i onB,.

(22)

Next, on B,, we introduce the TE;;-mode propagation con-
stant B, and the electric-field component is written as

1 1

=E.oexp(— jBy), omnB, (23)
and its outward normal derivative g, is also written as
du,
4= g =~ BEoep(~ jBy),  onB,  (24)

So, on B,, the next relationship between u, and ¢, is obtained as
follows:

- qoz_j:BuO’ (25)
From (20), (21), (22), and (25), the following équation, to be

onB,.
'

B

B
82 R2 823

Fig. 4. Two-dimensional region constructed of three media.

solved finally, is obtained:

. (T )
[G, - JjBF, - HGM]{ }=H,t7,, inR,. (26)

9w

In the right-hand side of (26), all quantities are known and q,, #,,,
and g, are obtained as a solution. Then, ¢, is given by (25).

IV. MULTI-MEDIA PROBLEMS

For multi-media cases, any boundary method requires to make
up equatlons for. eacti homogeneous sub-domain constructed of
one media. So it is generally said that boundary ‘methods are
weak in multi-media-problems and the finite-clement method is
superior to the boundary-element method in such a case. How-
ever, the authors have verified that a-bit of effort on the design of
the computer program makes this fault of the boundary-clement
method negligible, and they propose a procedure of program-
ming, for handling multi-media problems, in a slightly differént
style from those of the references [3 1 [4].

Consider a two-dimensional reglon constructed of three differ-
ent media, as shown in Fig. 4, where R;,” R,, and R; are
homogeneous sub-domains, B,, B,, and B; are the boundaries
belonging to only R;, R,, and R, respectively, and By,, By, and
B, are the interfaces between two adjacent sub-domains. The
ordinary boundary-element technique leads to the following
equations for each homogeneous sub-domain:

¢

71 L1

[GlG‘l’G“’ g1y —[Hle%>H31>] uy b iR, (27)
\af? uy
9, - u;

[6,6263]{4% )= = [mRPHE]{ v8 inR, (28)
q(2> u{%’
q; us

[6:6969 {q%?’ = [mEPRP]{ v in R;.
P ufy

(29)

In (27)—(29), superscript (i) implies the quantity defined in R,.
The boundry conditions on the interfaces are as follows:

"{2) = "{7) =uy, ‘I{z) = _‘Ifz) =¢I12, on B, (30)
2 _ _ 2) -

”(23) "%3 =uy, ¢5= —q% =42, on By, (31)
- D

"gl) = "51) = Uz, ‘151) =—¢5 =43, on By;. (32)

In the above conditions, the minus sign of ¢ originates from the
outward normal directions of the adjacent two subregions oppo-
site each other. From (27)—(32), we obtain the next equation to
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be solved finally.

G, o 0 G{Iz) n — ng)
o G, 0 -G¥ -—-HP
0o 0 G, o o
H 0 0]y
=0 H, O|u],
0O O H|l%

V. ELECTROMAGNETIC SCATTERING PROBLEMS

In this section, the procedure analyzing the problem of electro-
magnetic scattering by dielectric bodies is developed. This is
considered to be the problem of multi-media and the unbounded
field. Therefore, the procedure developed for multi-media prob-
lems can be utilized for the scattering problem in the form
extended a little.

It is assumed that the incident wave is the E-wave and propa-
gates in the direction parallel to the x— y plane. All quantities are
uniform in the z-direction. The analyzed region is constructed of
two subregions, as shown in Fig. 5. Subregion R, is inside the
dielectric cylinder and subregion R, is outside of it. The latter is
an unbounded field, but at infinity, the radiation condition can
be taken for the scattering wave, so that the boundary-element
equations are considered on only the dielectric surface B,

G,q;=Hyuy, inR;
ul=ul,sc+ul,1n (34)
q; =ql,sc +ql.m
GOqO.sc:HOuo,sc. in RO' (35)

Here, subscripts I and O imply the quantities defined in R, and
R, respectively, and sc and in indicate the scattering and inci-
dent waves, respectively. In R,, the ruling equation is defined
using the total wave, i.e., the incident wave plus the scattering
wave. On the contrary, in R, the radiation condition can’t be
applied for the incident wave, so that the equation is defined by
only the scattering wave. ‘
On B,, the following boundary conditions are taken:

Uy o =Up se=HU,, on B, (36)

91.5c= 90,5 =49» onB,. (37)
In addition, the incident wave is described as follows:

Uy =ty n = Esy nexp(jkp). (38)

Here, the p coordinate is chosen in the direction of the incidence,
as in Fig. 5. For ¢, ,,, we derive the following equation:

(39)

where 8 is the incident angle. In matrix notation, the above
relation is rewritten as

= xcosf + ysinf

q5.n =Blul,1n' (40)

3
-G
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Fig. 5. Electromagnetic scattering by a dielectric cylinder.

From (34)-(40), the following equation is obtained for R, + R:
HI

~G, [%]_[H,—G,B,]
GO - HO s B (4} “r.ine
By (41), the scattering field is calculated on the boundary B,
provided that the incident wave is given there.

The procedure proposed here is very powerful for the case
where the diclectric body has a much larger dimension than the
wavelength of the incidence or has a large dielectric constant. The
finite-element method is weak because it requires a large com-
puter memory.

(41)

VI. ANALYZED RESULTS

A. Open-Ended Parallel- Plane Waveguides

We analyzed the reflection coefficients of three kinds of wave-
guides, ie., flanged, unflanged, and flared, consisting of two
parallel planes. These are unbounded field problems, and closed
boundaries extending to infinity should be chosen. But at infin-
ity, the radiation condition can be introduced, and at the point
several wavelengths distant from the open-end of the waveguide,
the field value becomes negligibly small, so that the contribution
to the integration can be neglected. The finite models are chosen
as in Fig. 6, which are half-models, because each of them has the
symmetry axis parallel to the direction of electromagnetic wave
propagation. Fig. 7 denotes the results obtained with the
boundary-element method for the above three cases. They have
good agreement with Lee’s solution by ray theory [8],
Vaynshteyn’s by the Wiener-Hopf technique [9], and the results
by the finite-element method extended to unbounded fields [2].
For the flared waveguide, the boundary-element method results
are compared with those of the boundary integral equation
method [10]. All of the above boundary-element calculations are

» performed with 40 nodes, while the corresponding finite-clement
calculations need at least 400 nodes. The problems analyzed here
are unbounded ones, for which the boundary-element method
secems to be the most suitable method.
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Fig. 6. Analyzed models of open-ended parallel-plane waveguides. (a) Flanged, (b) unflanged, and (¢) flared.
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Fig. 7. Reflection coefficients of open-ended parallel-plane waveguides. Absolute value |R| and phase arg(R). (a) Flanged, (b)
unflanged, and (c) flared.

B. A Symmetrical H - Plane Y- Junction

The electric-field distribution in an H-plane Y-junction is
analyzed. The electromagnetic wave is assumed to propagate
along the y-axis, as in Fig. 8, which also indicates the analyzed
model. The right half of the model is considered for the symme-
try. On the input- and output-side boundaries, the TE,, mode is
assumed. Fig. 9 shows the electric-field distribution, represented

by the standing-wave on the centerlines, Details of their positions
are shown in Fig. 8. From the results in Fig, 8, the reflection
coefficient due to this Y-junction is calculated as 0.18. This value
leads to the calculated amplitude of the electric field at the
output side of the junction, y(1-0.18%)/2 = 0.6956, where that
of the input side is assumed to be 1.0. The value, 0.6956, agrees
well with the boundary-element result of the electric standing-
wave amplitude in Fig. 9,
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Fig. 8. Analyzed model of H-plane Y-junction.
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Fig. 9. The electric-field distribution in a A-plane Y-junction.
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Fig. 10. Flanged open-ended wavegwde with a dielectric cylinder placed at
its open-end.

C. A Waveguide with a Dielectric Cylinder Placed at its Open -end

Here, we analyze the electromagnetic-field distribution of the
case where the parallel-plane waveguide is open-ended with in-
finite flanges and a dielectric cylinder is placed at the open-end,
as in Fig. 10. Fig. 11 shows the electric-field distributions for
three values of dielectric constant, 1.0, 2.0, and 3.0. The case
where ¢, =1.0 implies a homogeneous case, i.e., no cylinder is
placed. This model brings the reflection coefficient, 0.029, which
agrees with that obtained by the computer program for the
homogeneous case (cf. Fig. 7(a)) and clarifies the propriety of the
multi-media case analyzing procedure. From Fig. 11, it is found
that the larger dielectric constant becomes, the denser the elec-
tric-field concentrates to the dielectric cylinder.

D. Electromagnetic Scattering of Dielectric Circular Cylinder

As the last example, the plane electromagnetic wave scattering
by a dielectric circular cylinder is investigated. The incident wave
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Fig. 11. The electric-field distribution in the case where a dielectric cylinder
is placed at the open-end of flanged waveguides. (a) Dielectric constant of
the cylinder €, =1.0, i e, no cylinder is placed. (b) €, =2.0. (¢) €,=30.
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Fig. 12. Dielectric circular cyhnder and the incident E-wave,

0.408

is assumed to travel along the x-axis in the negative x-direction.
Details are shown in Fig. 12. The dielectric cylinder is assumed to
have a dielectric constant 2.0 and a radius 0.408\, where A is a
wavelength in free space. Fig. 13 is the amplitude and phase of
the E-wave scattering far-field pattern in this casc. In addition,
Fig. 14 shows the electric-field distribution around the dielectric
cylinder. In Fig. 13, the results obtained by the boundary-element'
method are compared with analytical ones and show good accu-
racy. The calculations are done with only 24 nodes. For smaller
cylinders, more accurate results have been obtained. For larger
cylinders, no actual analysis has yet been performed, but it seems
that the boundary-element method is more suitable than the
finite-element method.

E. Computer Implementation

Boundary-element calculations require only a small computer
memory, so that a microcomputer can handle them. The tech-
niques discussed in this paper have been implemented by a
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Fig. 13. E-wave scattering far-field pattern for dielectric circular cylinder in
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Fig. 14. The electric-field distribution around the dielectric circular cylinder.

FORTRAN program on a microcomputer, whose main CPU is
MC68000 (8 MHz) and whose operating system is the UCSD
p-system. Typically, the case of a parallel-plane waveguide having
40 nodes took about 20 m of CPU time.

VIL

Application of the boundary-element method to electromag-
netic-field problems was proposed. Several analyzing procedures
for interesting cases were also given. The results obtained show
that the boundary-element method is a very powerful numerical
method for electromagnetic-field problems. Namely, by using the
boundary-element method, far fewer nodes than by the finite-ele-

CONCLUSIONS
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ment method bring good accuracy, and unbounded field prob-
lems can be treated without any additional technigue.
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Optimum Design of a Potentially Dispersion-Free
Helical Slow-Wave Circuit of a Broad-Band TWT

B. N. BASU, B. B. PAL, V. N. SINGH, anD N. C. VAIDYA

Abstract — The results of an equivalent circuit analysis are studied for a
potentially dispersion-free slow-wave circuit of a TWT which consists of a
dielectric-supported helix in a metal shell provided with vanes. The opti-
mum vane dimensions are predicted, which should be helpful in broadband-
ing the performance of a TWT.

I. INTRODUCTION

With the advent of multi-octave-band traveling-wave tubes
(TWT’s), the study of dispersion shaping in the slow-wave struc-
tures of such tubes has become important [1]-[3]. In the case of a
tube having a metal shell, dispersion can be reduced by placing
the shell very close to the helix, but this will reduce the interac-
tion impedance considerably. An alternative method would be to
use a shell provided with metal vanes projected radially inward
[1], [2]. In this case, the shell can be placed farther from the helix
with the metal vanes allowed to approach the helix. The desired
flat dispersion characteristics may be obtained by optimizing the
radial dimension of the vanes.

In this paper, we present an optimum design curve relating the
vane dimension and the location of the metal shell with respect to
the helix, for different values of the helix wire radius. The curve is
obtained by studying the dispersion relation of the circuit which
can be derived using an equivalent circuit analysis.
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